-
Categories
-
Pharmaceutical Intermediates
-
Active Pharmaceutical Ingredients
-
Food Additives
- Industrial Coatings
- Agrochemicals
- Dyes and Pigments
- Surfactant
- Flavors and Fragrances
- Chemical Reagents
- Catalyst and Auxiliary
- Natural Products
- Inorganic Chemistry
-
Organic Chemistry
-
Biochemical Engineering
- Analytical Chemistry
-
Cosmetic Ingredient
- Water Treatment Chemical
-
Pharmaceutical Intermediates
Promotion
ECHEMI Mall
Wholesale
Weekly Price
Exhibition
News
-
Trade Service
Identification of important transcripts from fungal pathogens and host plants is indispensable for full understanding the molecular events occurring during fungal-plant interactions. Recently, we developed an improved LongSAGE method called robust-long serial analysis of gene expression (RL-SAGE) for deep transcriptome analysis of fungal and plant genomes. Using this method, we made 10 RL-SAGE libraries from two plant species (
Oryza sativa
and
Zea maize
) and one fungal pathogen (
Magnaporthe grisea
). Many of the transcripts identified from these libraries were novel in comparison with their corresponding EST collections. Bioinformatic tools and databases for analyzing the RL-SAGE data were developed. Our results demonstrate that RL-SAGE is an effective approach for large-scale identification of expressed genes in fungal and plant genomes.