-
Categories
-
Pharmaceutical Intermediates
-
Active Pharmaceutical Ingredients
-
Food Additives
- Industrial Coatings
- Agrochemicals
- Dyes and Pigments
- Surfactant
- Flavors and Fragrances
- Chemical Reagents
- Catalyst and Auxiliary
- Natural Products
- Inorganic Chemistry
-
Organic Chemistry
-
Biochemical Engineering
- Analytical Chemistry
-
Cosmetic Ingredient
- Water Treatment Chemical
-
Pharmaceutical Intermediates
Promotion
ECHEMI Mall
Wholesale
Weekly Price
Exhibition
News
-
Trade Service
Both obesity and stroke have reached epidemic proportions and are clearly related
.
According to recent data, up to 25% of adults over the age of 25 are expected to experience a stroke in their lifetime
Both obesity and stroke have reached epidemic proportions and are clearly related
Many studies link obesity with higher morbidity and increased severity of several cardiovascular risk factors, including an increased risk of stroke
The data were collected from the National Inpatient Sample (NIS), the Healthcare Cost and Utilization Project (HCUP), and the Agency for Healthcare Research and Quality (AHRQ)
For this study, we collected data on hospitalizations in the United States between October 2015 and December 2016
Investigators divided BMI into 6 subgroups, including BMI ≤ 19 kg/m 2 as underweight; BMI 20–25 kg/m 2 , normal weight; BMI 26–30 kg/m 2 , overweight; BMI 31–35 kg/m 2 , obese group I; BMI 36–39 kg/m 2 , obese group II; BMI ≥40 kg/m 2 , super obese group
A total of 16,837 hospitalizations for stroke in the United States were included in the analysis
In terms of clinical characteristics, 38% had a history of diabetes mellitus , 67% had essential hypertension , 10% had peripheral vascular disease, and 23% had a history of atrial fibrillation or flutter
Of the total population hospitalized for stroke, 8.
In-hospital mortality was recorded at 3.
6% in stroke hospitalized patients
.
Figure 2 shows the association between BMI and in-hospital mortality in the study population
In-hospital mortality was recorded at 3.
Several parameters were found to significantly increase the odds of in-hospital mortality in unadjusted analyses (Table 2)
.
These included: age, whiteness, personal history of hypertension, renal failure, peripheral vascular disease, heart failure, and atrial fibrillation/flutter (all p < 0.
Several parameters were found to significantly increase the odds of in-hospital mortality in unadjusted analyses (Table 2)
After adjusting for potential confounders, most of the above (except peripheral vascular disease) remained independent predictors of in-hospital mortality in multivariate analysis (Table 3)
.
Higher BMI and diabetes were independent predictors of improved survival
.
Deyo comorbidity index ≥2 was also an independent predictor of mortality in hospitalized stroke patients, OR-2.
39 (1.
94-2.
94), p < 0.
001
.
After adjusting for potential confounders, most of the above (except peripheral vascular disease) remained independent predictors of in-hospital mortality in multivariate analysis (Table 3)
.
Higher BMI and diabetes were independent predictors of improved survival
.
Deyo comorbidity index ≥2 was also an independent predictor of mortality in hospitalized stroke patients, OR-2.
39 (1.
94-2.
94), p < 0.
001
.
Multivariable Analysis for Predictors of In-Hospital Mortality.
Predictor | Probability (95% CI) | Odds Ratio (95% CI) | p -Value |
---|---|---|---|
Age Group, years | <0. 001 |
||
18–44 years | 1. 41% (1. 14, 1. 74) |
1. 00 (reference) |
n/A |
45–59 years | 1. 32% (1. 14, 1. 53) |
0. 93 (0. 76, 1. 15) |
0. 514 |
60–74 years | 1. 95% (1. 71, 2. 21) |
1. 39 (1. 14, 1. 69) |
0. 001 |
≥75 years | 2. 67% (2. 35, 3. 04) |
1. 92 (1. 57, 2. 35) |
<0. 001 |
Gender | 0. 023 |
||
Male | 1. 85% (1. 62, 2. 10) |
1. 00 (reference) |
n/A |
Female | 1. 69% (1. 48, 1. 92) |
0. 91 (0. 84, 0. 99) |
0. 023 |
Race | <0. 001 |
||
Non-white | 1. 63% (1. 42, 1. 87) |
1. 00 (reference) |
n/A |
White | 1. 91% (1. 69, 2. 16) |
1. 18 (1. 08, 1. 29) |
<0. 001 |
BMI Group | <0. 001 |
||
20–25 | 2. 55% (2. 17, 3. 00) |
1. 00 (reference) |
n/A |
Below 20 | 3. 85% (3. 35, 4. 43) |
1. 53 (1. 34, 1. 75) |
<0. 001 |
26–30 | 1. 44% (1. 23, 1. 69) |
0. 56 (0. 48, 0. 65) |
<0. 001 |
31–35 | 1. 14% (0. 98, 1. 32) |
0. 44 (0. 38, 0. 51) |
<0. 001 |
36–39 | 1. 07% (0. 90, 1. 26) |
0. 41 (0. 35, 0. 49) |
<0. 001 |
40 and Above | 1. 73% (1. 51, 1. 99) |
0. 67 (0. 58, 0. 78) |
<0. 001 |
Atrial Fibrillation/Flutter | <0. 001 |
||
No | 1. 58% (1. 39, 1. 79) |
1. 00 (reference) |
n/A |
Yes | 2. 91% (2. 53, 3. 33) |
1. 86 (1. 71, 2. 02) |
<0. 001 |
Congestive heart failure | <0. 001 |
||
No | 1. 73% (1. 53, 1. 96) |
1. 00 (reference) |
n/A |
Yes | 2. 20% (1. 90, 2. 56) |
1. 28 (1. 16, 1. 41) |
<0. 001 |
Chronic pulmonary disease | 0. 002 |
||
No | 1. 75% (1. 54, 1. 98) |
1. 00 (reference) |
n/A |
Yes | 2. 00% (1. 73, 2. 32) |
1. 15 (1. 05, 1. 26) |
0. 002 |
Diabetes Mellitus | <0. 001 |
||
No | 1. 84% (1. 63, 2. 08) |
1. 00 (reference) |
n/A |
Yes | 1. 40% (1. 21, 1. 62) |
0. 76 (0. 69, 0. 83) |
<0. 001 |
Hypertension | <0. 001 |
||
No | 2. 27% (1. 99, 2. 59) |
1. 00 (reference) |
n/A |
Yes | 1. 53% (1. 34, 1. 73) |
0. 67 (0. 62, 0. 72) |
<0. 001 |
Obesity | <0. 001 |
||
No | 3. 15% (2. 76, 3. 61) |
1. 00 (reference) |
n/A |
Yes | 1. 11% (0. 96, 1. 27) |
0. 34 (0. 31, 0. 39) |
<0. 001 |
Peripheral vascular disorders | 0. 392 |
||
No | 1. 76% (1. 56, 1. 99) |
1. 00 (reference) |
n/A |
Yes | 1. 85% (1. 57, 2. 18) |
1. 05 (0. 94, 1. 18) |
0. 392 |
Renal failure | <0. 001 |
||
No | 1. 71% (1. 51, 1. 93) |
1. 00 (reference) |
n/A |
Yes | 2. 32% (2. 01, 2. 68) |
1. 37 (1. 25, 1. 49) |
<0. 001 |
Income Percentile | 0. 011 |
||
0 to 25th percentile | 1. 86% (1. 63, 2. 12) |
1. 00 (reference) |
n/A |
26th to 50th percentile | 1. 86% (1. 62, 2. 13) |
1. 00 (0. 90, 1. 11) |
0. 995 |
51st to 75th percentile | 1. 81% (1. 57, 2. 09) |
0. 97 (0. 88, 1. 08) |
0. 608 |
76th to 100th percentile | 1. 55% (1. 33, 1. 81) |
0. 83 (0. 74, 0. 94) |
0. 002 |
Deyo-CCI | <0. 001 |
||
1 | 1. 15% (0. 93, 1. 42) |
1. 00 (reference) |
n/A |
2 or higher | 2. 70% (2. 48, 2. 93) |
2. 39 (1. 94, 2. 94) |
<0. 001 |
001 18–44 years 1.
41% (1.
14, 1.
74) 1.
00 (reference) n/A 45–59 years 1.
32% (1.
14, 1.
53) 0.
93 (0.
76, 1.
15) 0.
514 60–74 years 1.
95% (1.
71 , 2.
21) 1.
39 (1.
14, 1.
69) 0.
001 ≥75 years 2.
67% (2.
35, 3.
04) 1.
92 (1.
57, 2.
35) <0.
001 Gender 0.
023 Male 1.
85% (1.
62, 2.
10) 1.
00 (reference) n/A Female 1.
69% (1.
48 , 1.
92) 0.
91 (0.
84, 0.
99) 0.
023 Race <0.
001 Non-white 1.
63% (1.
42, 1.
87) 1.
00 (reference) n/A White 1.
91% (1.
69, 2.
16) 1.
18 (1.
08, 1.
29) <0.
001 BMI Group <0.
001 20–25 2.
55% (2.
17, 3.
00) 1.
00 (reference) n/A Below 20 3.
85% (3.
35, 4.
43) 1.
53 (1.
34, 1.
75) <0.
001 26–30 1.
44% (1.
23, 1.
69) 0.
56 (0.
48, 0.
65) <0.
001 31–35 1.
14% (0.
98, 1.
32) 0.
44 (0.
38, 0.
51) <0.
001 36–39 1.
07% (0.
90, 1.
26) 0.
41 (0.
35, 0.
49) <0.
001 40 and Above 1.
73% (1.
51, 1.
99) 0.
67 (1.
99) 0.
58, 0.
78) <0.
001 Atrial Fibrillation/Flutter <0.
001 No 1.
58% (1.
39, 1.
79) 1.
00 (reference) n/A Yes 2.
91% (2.
53, 3.
33) 1.
86 (1.
71, 2.
02) <0.
001 Congestive heart failure <0.
001 No 1.
73 % (1.
53, 1.
96) 1.
00 (reference) n/A Yes 2.
20% (1.
90, 2.
56) 1.
28 (1.
16, 1.
41) <0.
001 Chronic pulmonary disease 0.
002 No 1.
75% (1.
54, 1.
98) 1.
00 (reference) n/A Yes 2.
00 Hypertension < 0.
001 No 2.
27% (1.
99, 2.
59) 1.
00 (reference) n/A Yes 1.
53% (1.
34, 1.
73) 0.
67 (0.
62, 0.
72) <0.
001 Obesity <0.
001 No 3.
15% (2.
76, 3.
61) 1.
00 (reference) n/A Yes 1.
11% (0.
96, 1.
27) 0.
34 (0.
31, 0.
39) <0.
001 Peripheral vascular disorders 0.
392 No 1.
76% (1.
56, 1.
99) 1.
00 (reference) n/A Yes 1.
85% (1.
57, 2.
18) 1.
05 (0.
94, 1.
18) 0.
392 Renal failure <0.
001 No 1.
71% (1.
51, 1.
93) 1.
00 (reference ) n/A Yes 2.
32% (2.
01, 2.
68) 1.
37 (1.
25, 1.
49) <0.
001 Income Percentile 0.
011 0 to 25th percentile 1.
86% (1.
63, 2.
12) 1.
00 (reference) n/A 26th to 50th percentile 1.
86% (1.
62, 2.
13) 1.
00 (0.
90, 1.
11) 0.
995 51st to 75th percentile 1.
81% (1.
57, 2.
09) 0.
97 (0.
88, 1.
08) 0.
608 76th to 100th percentile 1.
55% (1.
33, 1.
81) 0.
83 (0.
710, 0.
94) 1 1.
15% (0.
93, 1.
42) 1.
00 (reference) n/A 2 or higher 2.
70% (2.
48, 2.
93) 2.
39 (1.
94, 2.
94) <0.
001 Age Group, years <0.
001 Age Group, years <0.
001 18–44 years 1.
41 % (1.
14, 1.
74) 1.
00 (reference) n/A 18–44 years1.
41% (1.
14, 1.
74)1.
00 (reference)n/A 45–59 years 1.
32% (1.
14, 1.
53) 0.
93 (0.
76, 1.
15) 0.
514 45–59 years1.
32% (1.
14, 1.
53)0.
93 (0.
76, 1.
15)0.
514 60–74 years 1.
95% (1.
71, 2.
21) 1.
39 (1.
14, 1.
69) 0.
001 60–74 years1.
95% (1.
71, 2.
21)1.
39 (1.
14, 1.
69)0.
001 ≥75 years 2.
67% (2.
35, 3.
04) 1.
92 (1.
57, ≥2.
35) <0.
001 75 years2.
67% (2.
35, 3.
04)1.
92 (1.
57, 2.
35)<0.
001 Gender 0.
023 Gender 0.
023 Male 1.
85% (1.
62, 2.
10) 1.
00 (reference) n/A Male1.
85% (1.
62, 2.
10)1.
00 (reference) n/A Female 1.
69% (1.
48, 1.
92) 0.
91 (0.
84, 0.
99) 0.
023 Female1.
69% (1.
48, 1.
92)0.
91 (0.
84, 0.
99)0.
023 Race <0.
001 Race <0.
001 Non-white 1.
63% (1.
42, 1.
87) 1.
00 (reference) n/A Non-white1.
63% (1.
42, 1.
87)1.
00 (reference)n/A White 1.
91% (1.
69, 2.
16) 1.
18 (1.
08, 1.
29) <0.
001 White1.
91% (1.
69, 2.
16) 1.
18 (1.
08, 1.
29)<0.
001 BMI Group <0.
001 BMI Group <0.
001 20–25 2.
55% (2.
17, 3.
00) 1.
00 (reference) n/A 20–252.
55% (2.
17, 3.
00)1.
00 (reference)n/A Below 20 3.
85% (3.
35, 4.
43) 1.
53 (1.
34, 1.
75) < 0.
001 Below 203.
85% (3.
35, 4.
43)1.
53 (1.
34, 1.
75)<0.
001 26–30 1.
44% (1.
23, 1.
69) 0.
56 (0.
48, 0.
65) <0.
001 26–301.
44% (1.
23, 1.
69, 0.
56) (0.
44) <0.
001 31–35 1.
14% (0.
98, 1.
32) 0.
44 (0.
38, 0.
51) <0.
001 31–351.
14% (0.
98, 1.
32)0.
44 (0.
38, 0.
51)<0.
001 36–39 1.
07% (0.
90, 1.
26) 0.
4 , 0.
49) <0.
001 36–391.
07% (0.
90, 1.
26)0.
41 (0.
35, 0.
49)<0.
001 40 and Above 1.
73% (1.
51, 1.
99) 0.
67 (0.
58, 0.
78) <0.
001 40 and Above1.
73% (1.
51, 1.
99 )0.
67 (0.
58, 0.
78)<0.
001 Atrial Fibrillation/Flutter <0.
001 Atrial Fibrillation/Flutter <0.
001 No 1.
58% (1.
39, 1.
79) 1.
00 (reference) n/A No1.
58% (1.
39, 1.
79)1.
00 (reference)n /A Yes 2.
91% (2.
53, 3.
33) 1.
86 (1.
71, 2.
02) <0.
001 Yes2.
91% (2.
53, 3.
33)1.
86 (1.
71, 2.
02)<0.
001 Congestive heart failure <0.
001 Congestive heart failure <0.
001 No 1.
73% (1.
53, 1.
96) 1.
00 (reference) n/A No1.
73% (1.
53, 1.
96)1.
00 (reference)n/A Yes 2.
20% (1.
90, 2.
56) 1.
28 (1.
16, 1.
41) <0.
001 Yes2.
20% (1.
90, 2.
56)1.
28 (1.
16, 1.
41)<0.
001 Chronic pulmonary disease 0.
002 Chronic pulmonary disease 0.
002 No 1.
75% (1.
54, 1.
98) 1.
00 (reference) n/A No1.
75% (1.
54, 1.
98)1.
00 (reference)n/A Yes 2.
00% (1.
73, 2.
32) 1.
15 (1.
05, 1.
26) 0.
002 Yes2.
00% (1.
73, 2.
32)1.
15 (1.
05, 1.
26)0.
002 Diabetes Mellitus <0.
001 Diabetes Mellitus <0.
001 No 1.
84% (1.
63, 2.
08) 1.
00 (reference) n/A No1.
84% (1.
63, 2.
08)1.
00 (reference)n/ A Yes 1.
40% (1.
21, 1.
62) 0.
76 (0.
69, 0.
83) <0.
001 Yes1.
40% (1.
21, 1.
62)0.
76 (0.
69, 0.
83)<0.
001 Hypertension <0.
001 Hypertension <0.
001 No 2.
27% (1.
99, 2.
59) 1.
00 (reference) n/A No2.
27% (1.
99, 2.
59)1.
00 (reference)n/A Yes 1.
53% (1.
34, 1.
73) 0.
67 (0.
62, 0.
72) <0.
001 Yes1.
53% (1.
34, 1.
73)0.
67 (0.
62, 0.
72)<0.
001 Obesity <0.
001 Obesity <0.
001 No 3.
15% (2.
76, 3.
61) 1.
00 (reference) n/A No3.
15% (2.
76, 3.
61)1.
00 (reference)n /A Yes 1.
11% (0.
96, 1.
27) 0.
34 (0.
31, 0.
39) <0.
001 Yes1.
11% (0.
96, 1.
27)0.
34 (0.
31, 0.
39)<0.
001 Peripheral vascular disorders 0.
392 Peripheral vascular disorders 0.
392 No 1.
76% (1.
56, 1.
999) ) 1.
00 (reference) n/A No1.
76% (1.
56, 1.
99)1.
00 (reference)n/A Yes 1.
85% (1.
57, 2.
18) 1.
05 (0.
94, 1.
18) 0.
392 Yes1.
85% (1.
57, 2.
18)1.
05 ( 0.
94, 1.
18)0.
392 Renal failure <0.
001 Renal failure <0.
001 No 1.
71% (1.
51, 1.
93) 1.
00 (reference) n/A No1.
71% (1.
51, 1.
93)1.
00 (reference)n/A Yes 2.
32% (2.
01, 2.
68) 1.
37 (1.
25, 1.
49) <0.
001 Yes2.
32% (2.
01, 2.
68)1.
37 (1.
25, 1.
49)<0.
001 Income Percentile 0.
011 Income Percentile 0.
011 0 to 25th percentile 1.
86% (1.
63, 2.
12) 1.
00 (reference) n/A 0 to 25th percentile1.
86% ( 1.
63, 2.
12)1.
00 (reference)n/A 26th to 50th percentile 1.
86% (1.
62, 2.
13) 1.
00 (0.
90, 1.
11) 0.
995 26th to 50th percentile1.
86% (1.
62, 2.
13)1.
00 (0.
90, 1.
11)0.
995 51 75th percentile 1.
81% (1.
57, 2.
09) 0.
97 (0.
88, 1.
08) 0.
608 51st to 75th percentile1.
81% (1.
57, 2.
09)0.
97 (0.
88, 1.
08)0.
608 0.
94) 0.
002 76th to 100th percentile1.
55% (1.
33, 1.
81)0.
83 (0.
74, 0.
94)0.
002 Deyo-CCI <0.
001 Deyo-CCI <0.
001 1 1.
15% (0.
93, 1.
42) 1.
00 (reference) n/A 11.
15% ( 0.
93, 1.
42)1.
00 (reference)n/A 2 or higher 2.
70% (2.
48, 2.
93) 2.
39 (1.
94, 2.
94) <0.
001 2 or higher2.
70% (2.
48, 2.
93)2.
39 (1.
94, 2.
94)<0.
001
。,,,
。 NIS , 30
。,
。“”
。 NIS ,、、
。,
。,,
。
。,,,
。 NIS , 30
。,
。“”
。 NIS ,、、
。,
。,,
。
。,,,
。 NIS , 30
。,
。“”
。 NIS ,、、
。,
。,,
。
,, J
。“”,
。
。“”,
。,, J
。“”,
。
:
::Rozen G, Elbaz-Greener G, Margolis G, Marai I, Heist EK, Ruskin JN, Carasso S, Roguin A, Birati EY, Amir O.
The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.
S.
J Clin Med.
2022 Mar 17;11(6):1678.
doi: 10.
3390/jcm11061678
The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the US The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the US Leave a Comment